Slide of the Seminar

Optimum transport and exact coherent states: the Rayleigh-Bérnard example

Prof. Fabian Waleffe

ERC Advanced Grant (N. 339032) "NewTURB"
(P.I. Prof. Luca Biferale)

Università degli Studi di Roma Tor Vergata
C.F. n. 802 I 3750583 - Partita IVA n. 02133971008 -Via della Ricerca Scientifica, I - 00133 ROMA

Optimum transport and exact coherent states: the Rayleigh-Bénard example

Fabian Waleffe

Department of Mathematics
Department of Engineering Physics
with
Anakewit Boonkasame, David Sondak \& Leslie Smith

WISCONSIN
UNIVERSITY OF WISCONSIN-MADISON

Unstable coherent states in shear flows

3D Traveling Wave in
Plane Poiseuille flow

Derek Stretch, CTR 1990
Structure of high drag regions in turbulent channel flow $\left(\mathrm{KMM} \mathrm{R}_{\tau}=180\right)$

`Exact’ Coherent structures

self-consistently combine:

- streaks
- staggered quasi streamwise vortices
- `sweeps’ (Q4) and `ejections’ (Q2)
- solve Navier-Stokes! (hence `exact')

Unstable 3D Steady State in Plane Couette Flow

One unstable steady state (upper branch) captures statistics quite well

Unstable time-periodic solutions in Plane Couette Flow

Energy Input \& Dissipation
G. Kawahara and S. Kida

Mean U
u, v, w
rms

One unstable periodic state captures more statistics better

`Optimum’ channel flow ECS

$$
\min R_{\tau}=2 h^{+}=44 \text { for } L_{x}^{+}=274, L_{z}^{+}=105
$$

Lots of EQs, TWs, POs: which ones matter?

Attempted to compute envelope,
largest and smallest shear solutions optimizing over both horizontal wavenumbers
(Jue Wang \& FW, 2003, abandoned)

Computing envelope was too hard

(back then in 2003)

Shear flows are difficult:
ECS are 3D traveling waves, periodic orbits,...
Lots of different solutions

The simpler Rayleigh-Bénard example

COLD

Rayleigh-Bénard:
 Paradigmatic problem in nonlinear physics

- Fluid instabilities, bifurcations,
- Lorenz eqns, attractor, chaos, ...
- Pattern formation, ...
- Turbulence...

Turbulence in Rayleigh-Bénard convection

van der Poel et al. Computers in Fluids, 2015

$$
R a=10^{8}, \operatorname{Pr}=0.7
$$

Turbulence in Rayleigh-Bénard convection

Richard Stevens (cylinder)

$$
R a=10^{8}, \operatorname{Pr}=6.4
$$

Basic question: how much heat is transported for a given ΔT ?

Mechanistic picture for inertial scaling

COLD

Mechanistic argument for inertial scaling

- interior at $T=0$, top wall at $-\Delta T / 2$, bottom wall at $\Delta T / 2$

Mechanistic argument for inertial scaling

- interior at $T=0$, top wall at $-\Delta T / 2$, bottom wall at $\Delta T / 2$
- reduced gravity $g^{\prime}=g \alpha \Delta T / 2$

Mechanistic argument for inertial scaling

- interior at $T=0$, top wall at $-\Delta T / 2$, bottom wall at $\Delta T / 2$
- reduced gravity $g^{\prime}=g \alpha \Delta T / 2$
- free 'fall' velocity $V= \pm \sqrt{g^{\prime} h}, T= \pm \Delta T / 2$

Mechanistic argument for inertial scaling

- interior at $T=0$, top wall at $-\Delta T / 2$, bottom wall at $\Delta T / 2$
- reduced gravity $g^{\prime}=g \alpha \Delta T / 2$
- free 'fall' velocity $V= \pm \sqrt{g^{\prime} h}, T= \pm \Delta T / 2$
$\Rightarrow\langle V T\rangle=\sqrt{g^{\prime} h} \Delta T / 2=\frac{1}{4} \sqrt{g \alpha H}(\Delta T)^{3 / 2}$

Mechanistic argument for inertial scaling

- interior at $T=0$, top wall at $-\Delta T / 2$, bottom wall at $\Delta T / 2$
- reduced gravity $g^{\prime}=g \alpha \Delta T / 2$
- free 'fall' velocity $V= \pm \sqrt{g^{\prime} h}, T= \pm \Delta T / 2$
- $\Rightarrow\langle V T\rangle=\sqrt{g^{\prime} h} \Delta T / 2=\frac{1}{4} \sqrt{g \alpha H}(\Delta T)^{3 / 2}$
- Total heat flux/conductive heat flux:

$$
N u=1+\frac{\langle V T\rangle}{\kappa \Delta T / H} \sim \frac{1}{4}(\operatorname{Ra} P r)^{1 / 2}
$$

Mechanistic argument for inertial scaling

- interior at $T=0$, top wall at $-\Delta T / 2$, bottom wall at $\Delta T / 2$
- reduced gravity $g^{\prime}=g \alpha \Delta T / 2$
- free 'fall' velocity $V= \pm \sqrt{g^{\prime} h}, T= \pm \Delta T / 2$
- $\Rightarrow\langle V T\rangle=\sqrt{g^{\prime} h} \Delta T / 2=\frac{1}{4} \sqrt{g \alpha H}(\Delta T)^{3 / 2}$
- Total heat flux/conductive heat flux:

$$
N u=1+\frac{\langle V T\rangle}{\kappa \Delta T / H} \sim \frac{1}{4}(R a P r)^{1 / 2}
$$

- flux independent of ν, κ. Inertial scaling.

Mechanistic argument for inertial scaling

- interior at $T=0$, top wall at $-\Delta T / 2$, bottom wall at $\Delta T / 2$
- reduced gravity $g^{\prime}=g \alpha \Delta T / 2$
- free 'fall' velocity $V= \pm \sqrt{g^{\prime} h}, T= \pm \Delta T / 2$
- $\Rightarrow\langle V T\rangle=\sqrt{g^{\prime} h} \Delta T / 2=\frac{1}{4} \sqrt{g \alpha H}(\Delta T)^{3 / 2}$
- Total heat flux/conductive heat flux:

$$
N u=1+\frac{\langle V T\rangle}{\kappa \Delta T / H} \sim \frac{1}{4}(R a P r)^{1 / 2}
$$

- flux independent of ν, κ. Inertial scaling.
- More sophisticated arguments by Kraichnan, Spiegel, Grossmann \& Lohse. Richer phenomenology, log corrections, various regimes in ($R a, \operatorname{Pr}$) plane.

Mathematical model: Boussinesq equations
Velocity $\boldsymbol{u}(\boldsymbol{x}, t)$, Temperature $T(\boldsymbol{x}, t)$

$$
\begin{aligned}
\frac{\partial u}{\partial t}+\boldsymbol{u} \cdot \nabla \boldsymbol{u}+\nabla p & =\nu \nabla^{2} \boldsymbol{u}+T \hat{\boldsymbol{y}} \\
\nabla \cdot \boldsymbol{u} & =0
\end{aligned}
$$

$\frac{\partial T}{\partial t}+\boldsymbol{u} \cdot \nabla T=\kappa \nabla^{2} T$

Mathematical model: Boussinesq equations
Velocity $\boldsymbol{u}(\boldsymbol{x}, t)$, Temperature $T(\boldsymbol{x}, t)$

$$
\begin{aligned}
\frac{\partial u}{\partial t}+\boldsymbol{u} \cdot \nabla \boldsymbol{u}+\nabla p & =\nu \nabla^{2} \boldsymbol{u}+T \hat{\boldsymbol{y}} \\
\nabla \cdot \boldsymbol{u} & =0
\end{aligned}
$$

$$
\frac{\partial T}{\partial t}+\boldsymbol{u} \cdot \boldsymbol{\nabla} T=\kappa \nabla^{2} T
$$

(small) parameters

$$
\nu=4 \sqrt{\frac{P r}{R a}}, \quad \kappa=4 \sqrt{\frac{1}{R a P r}}
$$

i.e.

$$
\operatorname{Ra}=\frac{16}{\nu \kappa}, \quad \operatorname{Pr}=\frac{\nu}{\kappa}
$$

Mathematical model: Boussinesq equations
Velocity $\boldsymbol{u}(\boldsymbol{x}, t)$, Temperature $T(\boldsymbol{x}, t)$

$$
\begin{aligned}
\frac{\partial u}{\partial t}+\boldsymbol{u} \cdot \nabla \boldsymbol{u}+\nabla p & =\nu \nabla^{2} \boldsymbol{u}+T \hat{\boldsymbol{y}} \\
\nabla \cdot \boldsymbol{u} & =0
\end{aligned}
$$

$$
\frac{\partial T}{\partial t}+\boldsymbol{u} \cdot \boldsymbol{\nabla} T=\kappa \nabla^{2} T
$$

(small) parameters

$$
\nu=4 \sqrt{\frac{P r}{R a}}, \quad \kappa=4 \sqrt{\frac{1}{R a P r}}
$$

i.e.

$$
\operatorname{Ra}=\frac{16}{\nu \kappa}, \quad \operatorname{Pr}=\frac{\nu}{\kappa}
$$

$\operatorname{Pr} \approx 0.02$ (liquid Gallium), 0.7 (air), 7 (water), $100 \leq$ (motor oil)

Boundary conditions

- Isothermal: $T(\pm 1)=\mp 1$
- No-slip: $u=v=0$ at $y= \pm 1$
- Periodic, wavelength $\frac{2 \pi}{\alpha}$ in horizontal x direction

Eliminating pressure and restricting to 2D

$$
\begin{aligned}
\left(\partial_{t}-\nu \nabla^{2}\right) \nabla^{2} v & =\partial_{x}\left(v \nabla^{2} u-u \nabla^{2} v\right)+\partial_{x}^{2} T \\
\left(\partial_{t}-\kappa \nabla^{2}\right) T & =-\left(u \partial_{x}+v \partial_{y}\right) T
\end{aligned}
$$

$\partial_{x} u=-\partial_{y} v$ and eqn for mean velocity field $u_{0}(y, t):$

$$
\left(\partial_{t}-\nu \partial_{y}^{2}\right) u_{0}=-\partial_{y} \overline{u v}
$$

$B C: v=\partial_{y} v=0, T=\mp 1$ at $y= \pm 1$.
Period $L_{x}=\frac{2 \pi}{\alpha}$ in X

Pure conduction solution: $\boldsymbol{u}=0, T=-y \quad \forall R a, \operatorname{Pr}$

Temperature

Bifurcation to convection for $R a>1708, \alpha_{c} \approx \pi / 2, \forall \operatorname{Pr}$

supercritical bifurcation from $R a=1708$ (no-slip)

Stuart-Landau equation:

$$
\frac{d A}{d t} \simeq\left(R-R_{c}\right) A-\lambda_{2}|A|^{2} A+\cdots
$$

stability curve about: $\boldsymbol{u}=0, T=-y$

Qualitatively same for no-slip: $\alpha_{c} \approx 1.558, \operatorname{Ra}{ }_{c} \approx 1708$. Independent of Pr (only $\nu \kappa$ matters for linear stability).

Multiple convective equilibria for $L / H=2, R a=4000$

Top: primary mode $\alpha=\pi / 2 \approx \alpha_{c} \quad$ Bottom: $\alpha=\pi$ mode

Bifurcations of Primary Branch

Primary mode $\alpha \approx \pi / 2$ (blue), Hopf bifurcation near Ra ≈ 53000

Bifurcation of Primary 2nd harmonic

Primary mode $\alpha \approx \pi / 2$ (blue), Hopf bifurcation near Ra ≈ 53000

Heat transport by marginal stability (Malkus 1954)

- Interior at $T=0$: marginal inviscid stability

Heat transport by marginal stability (Malkus 1954)

- Interior at $T=0$: marginal inviscid stability
- Boundary layers of thickness δ marginally stable:

$$
R a^{(\delta)}=\frac{g \alpha(\Delta T / 2) \delta^{3}}{\nu \kappa} \approx \frac{1708}{16}
$$

Heat transport by marginal stability (Malkus 1954)

- Interior at $T=0$: marginal inviscid stability
- Boundary layers of thickness δ marginally stable:

$$
\begin{aligned}
& R a^{(\delta)}=\frac{g \alpha(\Delta T / 2) \delta^{3}}{\nu \kappa} \approx \frac{1708}{16} \\
\Rightarrow & N u \sim \frac{\kappa(\Delta T / 2) / \delta}{\kappa(\Delta T) / H} \sim 0.084 R a^{1 / 3}
\end{aligned}
$$

Heat transport by marginal stability (Malkus 1954)

- Interior at $T=0$: marginal inviscid stability
- Boundary layers of thickness δ marginally stable:

$$
\begin{aligned}
& R a^{(\delta)}=\frac{g \alpha(\Delta T / 2) \delta^{3}}{\nu \kappa} \approx \frac{1708}{16} \\
\Rightarrow & N u \sim \frac{\kappa(\Delta T / 2) / \delta}{\kappa(\Delta T) / H} \sim 0.084 \mathrm{Ra}^{1 / 3}
\end{aligned}
$$

- flux independent of H (Pr too).
- What do unstable coherent states have to tell us?
- What do unstable coherent states have to tell us?
- Which unstable coherent states should we consider?

Continuation of unstable Primary (1)

Primary mode $\alpha \approx \pi / 2$ (blue), Hopf bifurcation near Ra ≈ 53000
Second mode $\alpha=\pi$ (green)

Compute

- 2D steady states, typically unstable
- Impose mirror symmetry

$$
\begin{aligned}
& {[u, v, T](x, y, t)=[-u, v, T](-x, y, t)} \\
& \quad \Rightarrow u_{0}(y, t)=0 \quad \text { no mean shear }
\end{aligned}
$$

- Shift-reflect symmetry (Newton only)

$$
[u, v, T](x, y, t)=[u,-v,-T]\left(x+\frac{L_{x}}{2},-y, t\right)
$$

Numerical, spectral expansion

Chebyshev polynomials $T_{m}(y)$ integration in wall-normal y direction, Fourier in \times (periodic)

$$
\begin{aligned}
& \partial_{y}^{4} v(x, y, t)=\sum_{l=-L_{T}}^{L_{T}} \sum_{m=0}^{N_{C}} a_{l m}(t) T_{m}(y) e^{i l \alpha x}, \\
& \partial_{y}^{2} T(x, y, t)=\sum_{l=-L_{T}}^{L_{T}} \sum_{m=0}^{N_{C}} b_{l m}(t) T_{m}(y) e^{i l \alpha x},
\end{aligned}
$$

Zebib 1984 for OS, Greengard 1989 for Heat, Jeffreys 1928 for RBC! ... Four separate codes, differ in treatment of 4th order v equation, different time-integration schemes, symmetries, Newton, etc.

Numerics

- Cheb-Tau (or collocation) doesn't work at all for time-marching (huge spurious eigs >0)
- Cheb-Galerkin $p=1$ or 2 fine

$$
\int_{-1}^{1} f(y)\left(1-y^{2}\right)^{p} \frac{T_{m}(y)}{\sqrt{1-y^{2}}} d y
$$

- (Chebyshev \rightarrow Gegenbauer/Ultraspherical)
- Proven!
M. Charalambides and FW, SIAM J. Numer. Analysis 2008
（1）Primary branch，$L / H \simeq 2$ ，unstable for $R a>53000$

$$
R a=5000
$$

（1）Primary branch，$L / H \simeq 2$ ，unstable for $R a>53000$

$$
R a=10000
$$

(1) Primary branch, $L / H=2$, unstable for $R a>53000$

$$
R a=20000
$$

（1）Primary branch，$L / H=2$ ，unstable for $R a>53000$

$$
R a=40000
$$

（1）Primary branch，$L / H=2$ ，unstable for $R a>53000$

$$
R a=80000
$$

（1）Primary branch，$L / H=2$ ，unstable for $R a>53000$

$$
R a=160000
$$

(1) Primary branch, $L / H=2$, unstable for $R a>53000$

$$
R a=400000
$$

(1) Primary branch, $L / H=2$, unstable for $R a>53000$

$$
R a=800000
$$

(1) Primary branch, $L / H=2$, unstable for $R a>53000$

$$
R a=1600000
$$

(1) Primary branch, $L / H=2$, unstable for $R a>53000$

$$
R a=3200000
$$

(1) Primary branch, $L / H=2$, unstable for $R a>53000$

$$
R a=4000000
$$

(1) Primary branch, $L / H=2$, unstable for $R a>53000$

$$
R a=5000000
$$

（1）Primary branch，$L / H=2$ ，unstable for $R a>53000$

$$
R a=7000000
$$

（1）Primary branch，$L / H=2$ ，unstable for $R a>53000$

$$
R a=10000000
$$

（1）Primary branch，$L / H=2$ ，unstable for $R a>53000$

$$
R a=20000000
$$

（1）Primary branch，$L / H=2$ ，unstable for $R a>53000$

$$
R a=40000000
$$

(1) Primary branch, $L / H=2$, Velocity v

$$
R a=10000000
$$

(1) Primary branch, $L / H=2$, Streamfunction Ψ

$$
R a=5000000
$$

(1) Primary branch, $L / H=2$, Streamfunction Ψ

$$
R a=10000000
$$

(1) Primary branch, $L / H=2$, Streamfunction ψ

$$
R a=20000000
$$

(1) Primary branch, $L / H=2$, Streamfunction ψ

$$
R a=40000000
$$

（1）Primary branch，$L / H=2$ ，unstable for $R a>53000$

$$
R a=40000000
$$

Continuation of unstable Primary (1)

Primary mode $\alpha \approx \pi / 2$ (blue), Hopf bifurcation near $R a \approx 53000$.
Second mode $\alpha=\pi$ (green).

Continuation of Optimum Branch (2) now

Primary mode $\alpha \approx \pi / 2$ (blue), Hopf bifurcation near $R a \approx 53000$.
Second mode $\alpha=\pi$ (green).
(2) Optimum branch: pick α to maximize Nu

$$
R a=6000
$$

(2) Optimum branch: pick α to maximize Nu

$$
R a=12000
$$

(2) Optimum branch: pick α to maximize Nu

$$
R a=25000
$$

(2) Optimum branch: pick α to maximize Nu

$$
R a=50000
$$

(2) Optimum branch: pick α to maximize Nu

$$
R a=100000
$$

(2) Optimum branch: pick α to maximize Nu

$$
R a=200000
$$

(2) Optimum branch: pick α to maximize Nu

$$
R a=400000
$$

(2) Optimum branch: pick α to maximize Nu

$$
R a=800000
$$

(2) Optimum branch: pick α to maximize Nu

$$
R a=1200000
$$

(2) Optimum branch: pick α to maximize Nu

$$
R a=2000000
$$

(2) Optimum branch: pick α to maximize Nu

$$
R a=3000000
$$

(2) Optimum branch: pick α to maximize Nu

$$
R a=4000000
$$

(2) Optimum branch: pick α to maximize Nu

$$
R a=6000000
$$

(2) Optimum branch: pick α to maximize Nu

$$
R a=10000000
$$

(2) Optimum branch: pick α to maximize Nu

$$
R a=20000000
$$

(2) Optimum branch: pick α to maximize Nu

$$
R a=40000000
$$

(2) Optimum branch: pick α to maximize Nu

$$
R a=100000000
$$

(2) Optimum branch: pick α to maximize Nu

$$
R a=400000000
$$

(2) Optimum branch: pick α to maximize Nu

$$
R a=1000000000
$$

(2) Optimum branch: pick α to maximize Nu
$R a=2000000000$

(2) Optimum branch: pick α to maximize Nu

$$
R a=4000000000
$$

(2) Optimum branch: pick α to maximize Nu

$$
R a=7000000000
$$

$N u(R a):$ primary

Waleffe, Boonkasame, Smith, Phys Fluids 2015 + new results
$N u(R a)$: primary, optimum

Waleffe, Boonkasame, Smith, Phys Fluids 2015 + new results
$N u(R a)$: primary, optimum, Upper Bounds

Waleffe, Boonkasame, Smith, Phys Fluids 2015 + new results
$N u(R a)$: primary, optimum, Upper Bounds, Exp. Data

Waleffe, Boonkasame, Smith, Phys Fluids 2015 + new results

$\mathrm{Nu}(R a)$ experimental data sets

- $N u \sim 0.088 R a^{0.32}$ fit of 3D turbulent data for $D / H=1 / 2$ (Niemela, Sreenivasan, et al., 2000-2006)
- $N u \sim 0.105 R a^{0.31}$ fit of 3D turbulent data for $D / H=1 / 2$ (He, Funfschilling, Nobach, Bodenschatz, Ahlers, 2012)
- $\mathrm{Nu}(\mathrm{Ra})$ 3D turbulent data for $\mathrm{D} / \mathrm{H}=4$ (Niemela and Sreenivasan 2006)

Niemela and Sreenivasan 2006

Figure 3. $N u_{\text {corr }}$ versus $R a$ for the present data ($\Gamma=4$), adjusted for the effects of sidewall and horizontal plates. Also shown are recent results of Funfschilling et al. (2005) for aspect ratio 3 , similarly corrected. The inset shows the same $N u_{\text {corr }}$ data normalized by $R a^{1 / 3}$.
of $10^{10}<R a<10^{12}$, with the corrections described above raising the slope over the uncorrected data, which have a slope of more precisely $1 / 3$. For the data falling in the range $10^{8}<R a<10^{10}$ the local log-log slope is nearly constant giving an exponent of 0.31 . Both the constancy of the $\log -\log$ slope with increasing $R a$ and its numerical value are in good agreement with predictions of Grossmann \& Lohse (2002) in this range of $R a$ and for unity Pr (see their figure $4 b$). While the theory also predicts a saturation of the local exponent to $1 / 3$ at higher $R a$, it occurs more slowly than is observed here. For comparison, we also show recent results of Funfschilling et al. (2005) also corrected for sidewall and end-plate effects. These data were obtained for $\Gamma=3$ and $\operatorname{Pr}=4.38$, and accessed a limited range of $R a$.

Horizontal wavenumber α vs. Ra, optimum

Wobble in $\alpha_{\text {opt }}(R a) \quad$ why?

Wobble in $\alpha_{o p t}(R a) \quad$ why?
wrapping up of spiral structure

Sondak, Smith, Waleffe JFM 2015

Varying Pr

but multiple local maxima! ${ }_{\left(R a=310^{5}\right)}$

Sondak, Smith, Waleffe JFM 2015
$\mathrm{Nu}(\alpha, \mathrm{Ra}), \operatorname{Pr}=1 \quad$ 2nd max subdominant

$N u(\alpha, \operatorname{Ra}), \operatorname{Pr}=7$
2nd max almost takes over

$\mathrm{Nu}(\alpha, \operatorname{Ra}), \operatorname{Pr}=10$
2nd max takes over

$\operatorname{Nu}(\alpha, \operatorname{Ra}), \operatorname{Pr}=100 \quad$ 1st max disappears

$\mathrm{Nu}(\alpha, \operatorname{Ra}), \operatorname{Pr}=1,4,7,10,100$

$\operatorname{Ra}=10^{8}, \operatorname{Pr}=1,7,10$, Temperature

Conclusions: Turbulent transport \approx optimum transport?

- Malkus 1954 theory: maximize $N u$, marginal stability

$$
\rightarrow N u \sim R a^{1 / 3}
$$

Conclusions: Turbulent transport \approx optimum transport?

- Malkus 1954 theory: maximize $N u$, marginal stability

$$
\rightarrow N u \sim R a^{1 / 3}
$$

- Upper bound theories: Howard-Busse, Constantin-Doering, Nicodemus et al., Kerswell et al.

$$
\rightarrow N u \lesssim R a^{1 / 2}
$$

Conclusions: Turbulent transport \approx optimum transport?

- Malkus 1954 theory: maximize $N u$, marginal stability

$$
\rightarrow N u \sim R a^{1 / 3}
$$

- Upper bound theories: Howard-Busse, Constantin-Doering, Nicodemus et al., Kerswell et al.
$\rightarrow N u \lesssim R a^{1 / 2}$
- Whitehead-Doering 2D free-slip
$\rightarrow N u \lesssim R a^{5 / 12}$

Conclusions: Turbulent transport \approx optimum transport?

- Malkus 1954 theory: maximize $N u$, marginal stability

$$
\rightarrow N u \sim R a^{1 / 3}
$$

- Upper bound theories: Howard-Busse, Constantin-Doering, Nicodemus et al., Kerswell et al.
$\rightarrow N u \lesssim R a^{1 / 2}$
- Whitehead-Doering 2D free-slip

$$
\rightarrow N u \lesssim R a^{5 / 12}
$$

- (local?) optimum solutions of full Boussinesq equations

$$
\rightarrow N u \sim R a^{0.31}
$$

but optimum transport solutions are unstable ?!

- unstable to subharmonics even with mirror symmetry
- unstable to mean shear flow without mirror symmetry
- (weakly) stable with mirror symmetry and no larger scales

Optimum solution: unstable to mean shear flow

Optimum solution: unstable yet tight bound on Nu?

but optimum transport solutions are 2D ?!

- 2D optimum transport $=3 \mathrm{D}$ optimum $?$

but optimum transport solutions are 2D ?!

- 2D optimum transport $=3 \mathrm{D}$ optimum $?$
- yes (conjecture)

but optimum transport solutions are 2D ?!

- 2D optimum transport $=3 \mathrm{D}$ optimum $?$
- yes (conjecture)
- 2D, steady optimum with periodic $B C$ in horizontal captures 3D turbulent transport in cylinders with side walls ?

but optimum transport solutions are 2D ?!

- 2D optimum transport $=3 \mathrm{D}$ optimum $?$
- yes (conjecture)
- 2D, steady optimum with periodic $B C$ in horizontal captures 3D turbulent transport in cylinders with side walls ?
- really?!

but optimum transport solutions are 2D ?!

- 2D optimum transport $=3 \mathrm{D}$ optimum $?$
- yes (conjecture)
- 2D, steady optimum with periodic $B C$ in horizontal captures 3D turbulent transport in cylinders with side walls ?
- really?!
- yes, possibly

3D Turbulence in RBC: universality and sheets

Cylinder with $D / H=1 / 3$ and box (right), $\operatorname{Ra}=10^{11}, \operatorname{Pr}=0.7$ van der Poel et al., Computers \& Fluids 2015

Thank you

$\operatorname{Pr}=7, \operatorname{Ra}=1400000, \mathrm{~L} / \mathrm{H}=1$

Temperature, $\mathrm{Ra}=1.4 \mathrm{e}+06, \alpha=3.14$

