

Established by the European Commission

Slide of the Seminar

Optimum transport and exact coherent states: the Rayleigh-Bérnard example

Prof. Fabian Waleffe

ERC Advanced Grant (N. 339032) "NewTURB" (P.I. Prof. Luca Biferale)

Università degli Studi di Roma Tor Vergata C.F. n. 80213750583 – Partita IVA n. 02133971008 - Via della Ricerca Scientifica, I – 00133 ROMA

Optimum transport and exact coherent states: the Rayleigh-Bénard example

Fabian Waleffe

Department of Mathematics Department of Engineering Physics

with Anakewit Boonkasame, David Sondak & Leslie Smith

Unstable coherent states in shear flows

Derek Stretch, CTR 1990 Structure of high drag regions in turbulent channel flow (KMM $R_{\tau} = 180$)

`Exact' Coherent structures

self-consistently combine:

- streaks
- staggered quasi streamwise vortices
- `sweeps' (Q4) and `ejections' (Q2)
- solve Navier-Stokes! (hence `exact')

Unstable 3D Steady State in Plane Couette Flow

Unstable time-periodic solutions in Plane Couette Flow

Kawahara & Kida, JFM 2001

`Optimum' channel flow ECS

min $R_{\tau} = 2h^+ = 44$ for $L_x^+ = 274, L_z^+ = 105$

Lots of EQs, TWs, POs: which ones matter?

Attempted to compute **envelope**, largest and smallest shear solutions optimizing over both horizontal wavenumbers (Jue Wang & FW, 2003, *abandoned*)

Computing envelope was too hard (back then in 2003)

Shear flows are difficult: ECS are 3D traveling waves, periodic orbits,... Lots of different solutions

The simpler Rayleigh-Bénard example

Rayleigh-Bénard: Paradigmatic problem in nonlinear physics

- Fluid instabilities, bifurcations,
- Lorenz eqns, attractor, chaos, ...
- Pattern formation, ...
- Turbulence...

Turbulence in Rayleigh-Bénard convection

van der Poel *et al.* Computers in Fluids, 2015 $Ra = 10^8$, Pr = 0.7

Turbulence in Rayleigh-Bénard convection

Richard Stevens (cylinder) $Ra = 10^8, Pr = 6.4$

Basic question: how much heat is transported for a given ΔT ?

Mechanistic picture for inertial scaling

• interior at T = 0, top wall at $-\Delta T/2$, bottom wall at $\Delta T/2$

- interior at T = 0, top wall at $-\Delta T/2$, bottom wall at $\Delta T/2$
- reduced gravity $g' = g \alpha \Delta T/2$

- interior at T = 0, top wall at $-\Delta T/2$, bottom wall at $\Delta T/2$
- reduced gravity $g' = g \alpha \Delta T/2$
- ► free 'fall' velocity $V = \pm \sqrt{g' h}$, $T = \pm \Delta T/2$

- interior at T = 0, top wall at $-\Delta T/2$, bottom wall at $\Delta T/2$
- reduced gravity $g' = g \alpha \Delta T/2$
- ► free 'fall' velocity $V = \pm \sqrt{g' h}$, $T = \pm \Delta T/2$
- $\blacktriangleright \Rightarrow \langle VT \rangle = \sqrt{g'h} \Delta T/2 = \frac{1}{4} \sqrt{g \alpha H} (\Delta T)^{3/2}$

- interior at T = 0, top wall at $-\Delta T/2$, bottom wall at $\Delta T/2$
- reduced gravity $g' = g \alpha \Delta T/2$
- ► free 'fall' velocity $V = \pm \sqrt{g' h}$, $T = \pm \Delta T/2$
- $\blacktriangleright \Rightarrow \langle VT \rangle = \sqrt{g'h} \Delta T/2 = \frac{1}{4} \sqrt{g \alpha H} (\Delta T)^{3/2}$
- Total heat flux/conductive heat flux:

$$Nu = 1 + rac{\langle VT
angle}{\kappa \Delta T/H} \sim rac{1}{4} (Ra Pr)^{1/2}$$

- interior at T = 0, top wall at $-\Delta T/2$, bottom wall at $\Delta T/2$
- reduced gravity $g' = g \alpha \Delta T/2$
- ► free 'fall' velocity $V = \pm \sqrt{g' h}$, $T = \pm \Delta T/2$
- $\blacktriangleright \Rightarrow \langle VT \rangle = \sqrt{g'h} \Delta T/2 = \frac{1}{4} \sqrt{g \alpha H} (\Delta T)^{3/2}$
- Total heat flux/conductive heat flux:

$$Nu = 1 + rac{\langle VT
angle}{\kappa \Delta T/H} \sim rac{1}{4} (Ra Pr)^{1/2}$$

• flux independent of ν , κ . Inertial scaling.

- interior at T = 0, top wall at $-\Delta T/2$, bottom wall at $\Delta T/2$
- reduced gravity $g' = g \alpha \Delta T/2$
- ► free 'fall' velocity $V = \pm \sqrt{g' h}$, $T = \pm \Delta T/2$
- $\blacktriangleright \Rightarrow \langle VT \rangle = \sqrt{g'h} \Delta T/2 = \frac{1}{4} \sqrt{g\alpha H} \left(\Delta T \right)^{3/2}$
- Total heat flux/conductive heat flux:

$$Nu = 1 + rac{\langle VT
angle}{\kappa \Delta T/H} \sim rac{1}{4} (Ra Pr)^{1/2}$$

- flux independent of ν , κ . Inertial scaling.
- More sophisticated arguments by Kraichnan, Spiegel, ..., Grossmann & Lohse. Richer phenomenology, log corrections, various regimes in (*Ra*, *Pr*) plane.

Mathematical model: Boussinesq equations

Velocity $\boldsymbol{u}(\boldsymbol{x},t)$, Temperature $T(\boldsymbol{x},t)$

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u} + \boldsymbol{\nabla} \boldsymbol{p} = \nu \, \nabla^2 \boldsymbol{u} + T \, \hat{\boldsymbol{y}}$$
$$\boldsymbol{\nabla} \cdot \boldsymbol{u} = 0$$
$$\frac{\partial T}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} T = \kappa \, \nabla^2 T$$

Mathematical model: Boussinesq equations

Velocity $\boldsymbol{u}(\boldsymbol{x},t)$, Temperature $T(\boldsymbol{x},t)$

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u} + \boldsymbol{\nabla} \boldsymbol{p} = \nu \, \nabla^2 \boldsymbol{u} + T \, \hat{\boldsymbol{y}}$$
$$\boldsymbol{\nabla} \cdot \boldsymbol{u} = 0$$
$$\frac{\partial T}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} T = \kappa \, \nabla^2 T$$

(small) parameters

$$u = 4\sqrt{\frac{Pr}{Ra}}, \qquad \kappa = 4\sqrt{\frac{1}{Ra Pr}}$$
 $Ra = \frac{16}{\nu\kappa}, \qquad Pr = \frac{\nu}{\kappa}$

i.e.

Mathematical model: Boussinesq equations

Velocity $\boldsymbol{u}(\boldsymbol{x},t)$, Temperature $\boldsymbol{T}(\boldsymbol{x},t)$

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u} + \boldsymbol{\nabla} \boldsymbol{p} = \nu \, \nabla^2 \boldsymbol{u} + T \, \hat{\boldsymbol{y}}$$
$$\boldsymbol{\nabla} \cdot \boldsymbol{u} = 0$$
$$\frac{\partial T}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} T = \kappa \, \nabla^2 T$$

(small) parameters

$$u = 4\sqrt{\frac{Pr}{Ra}}, \qquad \kappa = 4\sqrt{\frac{1}{RaPr}},$$
 $Ra = \frac{16}{\nu\kappa}, \qquad Pr = \frac{\nu}{\kappa}$

i.e.

 $Pr \approx 0.02$ (liquid Gallium), 0.7 (air), 7 (water), $100 \leq (\text{motor oil})$

Boundary conditions

- ▶ Isothermal: $T(\pm 1) = \mp 1$
- No-slip: u = v = 0 at $y = \pm 1$
- Periodic, wavelength $\frac{2\pi}{\alpha}$ in horizontal x direction

Eliminating pressure and restricting to 2D

$$\begin{aligned} \left(\partial_t - \nu \nabla^2\right) \nabla^2 \mathbf{v} &= \partial_x \left(\mathbf{v} \nabla^2 \mathbf{u} - \mathbf{u} \nabla^2 \mathbf{v} \right) + \partial_x^2 \mathbf{T}, \\ \left(\partial_t - \kappa \nabla^2\right) \mathbf{T} &= -(\mathbf{u} \partial_x + \mathbf{v} \partial_y) \mathbf{T}, \end{aligned}$$

 $\partial_x u = -\partial_y v$ and eqn for mean velocity field $u_0(y, t)$:

$$\left(\partial_t - \nu \; \partial_y^2\right) u_0 = -\partial_y \overline{uv}$$

BC: $v = \partial_y v = 0$, $T = \mp 1$ at $y = \pm 1$. Period $L_x = \frac{2\pi}{\alpha}$ in x

Pure conduction solution: u = 0, T = -y $\forall Ra, Pr$

Bifurcation to convection for Ra > 1708, $\alpha_c \approx \pi/2$, $\forall Pr$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

supercritical bifurcation from Ra = 1708 (no-slip)

Stuart-Landau equation:

$$\frac{dA}{dt}\simeq (R-R_c)A-\lambda_2|A|^2A+\cdots$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへぐ

stability curve about: u = 0, T = -y

$$Ra_c = 16 \frac{(\alpha^2 + \pi^2/4)^3}{\alpha^2}$$
 free-slip

Qualitatively same for no-slip: $\alpha_c \approx 1.558$, $Ra_c \approx 1708$. Independent of Pr (only $\nu\kappa$ matters for linear stability).

Multiple convective equilibria for L/H = 2, Ra = 4000

Top: primary mode $\alpha = \pi/2 \approx \alpha_c$ Bottom: $\alpha = \pi$ mode

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● のへで

Bifurcations of Primary Branch

Primary mode $lpha pprox \pi/2$ (blue), Hopf bifurcation near $\mathit{Ra} pprox$ 53 000

Bifurcation of Primary 2nd harmonic

Primary mode $\alpha \approx \pi/2$ (blue), Hopf bifurcation near $Ra \approx 53\,000$ Second mode $\alpha = \pi$ (green)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ● ●
• Interior at T = 0: marginal inviscid stability

- Interior at T = 0: marginal inviscid stability
- Boundary layers of thickness δ marginally stable:

$$Ra^{(\delta)} = rac{glpha(\Delta T/2)\delta^3}{
u\kappa} pprox rac{1708}{16}$$

- Interior at T = 0: marginal inviscid stability
- Boundary layers of thickness δ marginally stable:

$$Ra^{(\delta)} = rac{glpha(\Delta T/2)\delta^3}{
u\kappa} pprox rac{1708}{16}$$

$$\Rightarrow \boxed{Nu \sim \frac{\kappa(\Delta T/2)/\delta}{\kappa(\Delta T)/H} \sim 0.084 \, Ra^{1/3}}$$

- Interior at T = 0: marginal inviscid stability
- Boundary layers of thickness δ marginally stable:

$$Ra^{(\delta)} = rac{glpha(\Delta T/2)\delta^3}{
u\kappa} pprox rac{1708}{16}$$

$$\Rightarrow \boxed{Nu \sim \frac{\kappa(\Delta T/2)/\delta}{\kappa(\Delta T)/H} \sim 0.084 \, Ra^{1/3}}$$

► flux independent of *H* (*Pr* too).

What do unstable coherent states have to tell us?

- What do unstable coherent states have to tell us?
- Which unstable coherent states should we consider?

Continuation of unstable Primary (1)

Primary mode $\alpha \approx \pi/2$ (blue), Hopf bifurcation near $Ra \approx 53\,000$ Second mode $\alpha = \pi$ (green)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Compute

- 2D steady states, typically unstable
- Impose mirror symmetry

$$[u, v, T](x, y, t) = [-u, v, T](-x, y, t)$$

 $\Rightarrow u_0(y,t) = 0$ no mean shear

Shift-reflect symmetry (Newton only)

$$[u, v, T](x, y, t) = [u, -v, -T](x + \frac{L_x}{2}, -y, t)$$

Numerical, spectral expansion

Chebyshev polynomials $T_m(y)$ integration in wall-normal y direction, Fourier in x (periodic)

$$\partial_{y}^{4}v(x, y, t) = \sum_{l=-L_{T}}^{L_{T}} \sum_{m=0}^{N_{C}} a_{lm}(t) T_{m}(y) e^{il\alpha x},$$

 $\partial_{y}^{2}T(x, y, t) = \sum_{l=-L_{T}}^{L_{T}} \sum_{m=0}^{N_{C}} b_{lm}(t) T_{m}(y) e^{il\alpha x},$

Zebib 1984 for OS, Greengard 1989 for Heat, Jeffreys 1928 for RBC! ... Four separate codes, differ in treatment of 4th order v equation, different time-integration schemes, symmetries, Newton, etc.

Numerics

- Cheb-Tau (or collocation) doesn't work at all for time-marching (huge spurious eigs > 0)
- Cheb-Galerkin p = 1 or 2 fine

$$\int_{-1}^{1} f(y) (1-y^2)^p \frac{T_m(y)}{\sqrt{1-y^2}} dy$$

- ► (Chebyshev → Gegenbauer/Ultraspherical)
- Proven!

M. Charalambides and FW, SIAM J. Numer. Analysis 2008

(1) Primary branch, $L/H \simeq 2$, unstable for Ra > 53000

 $Ra = 5\,000$

◆□> <□> <=> <=> <=> <=> <=> <</p>

(1) Primary branch, $L/H \simeq 2$, unstable for Ra > 53000

 $Ra = 10\,000$

 $Ra = 20\,000$

 $Ra = 40\,000$

 $Ra = 80\,000$

 $Ra = 160\,000$

◆□> <団> < Ξ> < Ξ> < Ξ> < Ξ</p>

 $Ra = 400\,000$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

 $Ra = 800\,000$

◆□> <団> <目> <目> <目> <目> <<=>

 $Ra = 1\,600\,000$

◆□> <団> <目> <目> <目> <日> <のへの</p>

 $Ra = 3\,200\,000$

◆□> <団> <目> <目> <目> <日> <のへの</p>

 $Ra = 4\,000\,000$

◆□> <団> <目> <目> <目> <日> <のへの</p>

 $Ra = 5\,000\,000$

 $Ra = 7\,000\,000$

 $Ra = 10\,000\,000$

 $Ra = 20\,000\,000$

 $Ra = 40\,000\,000$

(1) Primary branch, L/H = 2, Velocity v

 $Ra = 10\,000\,000$

 $Ra = 5\,000\,000$

 $Ra = 10\,000\,000$

 $Ra = 20\,000\,000$

 $Ra = 40\,000\,000$

 $Ra = 40\,000\,000$

Continuation of unstable Primary (1)

Primary mode $\alpha \approx \pi/2$ (blue), Hopf bifurcation near $Ra \approx 53\,000$. Second mode $\alpha = \pi$ (green).

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

Continuation of Optimum Branch (2) now

Primary mode $\alpha \approx \pi/2$ (blue), Hopf bifurcation near $Ra \approx 53\,000$. Second mode $\alpha = \pi$ (green).

< ロ > < 団 > < 目 > < 目 > < 目 > < 目 < つ < つ < つ

(2) Optimum branch: pick α to maximize Nu

 $Ra = 6\,000$

(2) Optimum branch: pick α to maximize Nu

 $Ra = 12\,000$

$Ra = 25\,000$

◆□ > < 団 > < 三 > < 三 > < 三 > < □ > < □ > <</p>

 $Ra = 50\,000$

◆□> <団> < Ξ> < Ξ> < Ξ> < Ξ</p>

 $Ra = 100\,000$

 $Ra = 200\,000$

◆□> <□> <=> <=> <=> <=> <=> <</p>

 $Ra = 400\,000$

 $Ra = 800\,000$

◆□> <□> <=> <=> <=> <=> <=> <</p>

 $Ra = 1\,200\,000$

◆□> <団> <目> <目> <目> <日> <のへの</p>

 $Ra = 2\,000\,000$

 $Ra = 3\,000\,000$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

 $Ra = 4\,000\,000$

 $Ra = 6\,000\,000$

 $Ra = 10\,000\,000$

 $Ra = 20\,000\,000$

 $Ra = 40\,000\,000$

 $Ra = 100\,000\,000$

Ra = 400 000 000

 $Ra = 1\,000\,000\,000$

 $Ra = 2\,000\,000\,000$

Ra = 4 000 000 000

 $Ra = 7\,000\,000\,000$

Nu(*Ra*): primary

Waleffe, Boonkasame, Smith, *Phys Fluids 2015* + new results

Nu(*Ra*): primary, optimum

Waleffe, Boonkasame, Smith, *Phys Fluids 2015* + new results

Nu(Ra): primary, optimum, Upper Bounds

Waleffe, Boonkasame, Smith, *Phys Fluids 2015* + new results

Nu(Ra): primary, optimum, Upper Bounds, Exp. Data

Waleffe, Boonkasame, Smith, *Phys Fluids 2015* + new results

Nu(Ra) experimental data sets

- Nu ~ 0.088 $Ra^{0.32}$ fit of 3D turbulent data for D/H = 1/2 (Niemela, Sreenivasan, et al., 2000-2006)
- Nu ~ 0.105 Ra^{0.31} fit of 3D turbulent data for D/H = 1/2 (He, Funfschilling, Nobach, Bodenschatz, Ahlers, 2012)

 Nu(Ra) 3D turbulent data for D/H = 4 (Niemela and Sreenivasan 2006)

Niemela and Sreenivasan 2006

FIGURE 3. Nu_{corr} versus Ra for the present data ($\Gamma = 4$), adjusted for the effects of sidewall and horizontal plates. Also shown are recent results of Funfschilling *et al.* (2005) for aspect ratio 3, similarly corrected. The inset shows the same Nu_{corr} data normalized by $Ra^{1/3}$.

of $10^{10} < Ra < 10^{12}$, with the corrections described above raising the slope over the uncorrected data, which have a slope of more precisely 1/3. For the data falling in the range $10^8 < Ra < 10^{10}$ the local log–log slope is nearly constant giving an exponent of 0.31. Both the constancy of the log–log slope with increasing *Ra* and its numerical value are in good agreement with predictions of Grossmann & Lohse (2002) in this range of *Ra* and for unity *Pr* (see their figure 4*b*). While the theory also predicts a saturation of the local exponent to 1/3 at higher *Ra*, it occurs more slowly than is observed here. For comparison, we also show recent results of Funfschilling *et al.* (2005) also corrected for sidewall and end-plate effects. These data were obtained for $\Gamma = 3$ and Pr = 4.38, and accessed a limited range of *Ra*.

Horizontal wavenumber α vs. *Ra*, optimum

Wobble in $\alpha_{opt}(Ra)$ why?

Wobble in $\alpha_{opt}(Ra)$ why? wrapping up of spiral structure

・ロト・< 三ト・< 三・< へ・< つ・< つ・

Varying *Pr*

little effect on optimum Nu(Ra)

Sondak, Smith, Waleffe JFM 2015

Varying Pr but multiple local maxima! ($Ra = 3 10^5$)

Sondak, Smith, Waleffe JFM 2015

 $Nu(\alpha, Ra), Pr = 1$ 2nd max subdominant

 $Nu(\alpha, Ra), Pr = 7$ 2nd max *almost* takes over

< ロ > < 団 > < 三 > < 三 > < 三 > < ○ < ○

 $Nu(\alpha, Ra), Pr = 10$ 2nd max takes over

 $Nu(\alpha, Ra), Pr = 100$ 1st max disappears

$Nu(\alpha, Ra), Pr = 1, 4, 7, 10, 100$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● のへで
$Ra = 10^8$, Pr = 1, 7, 10, Temperature

< ロ > < 団 > < 目 > < 目 > < 目 > < 目 < の < @

Malkus 1954 theory: maximize Nu, marginal stability
 $\rightarrow Nu \sim Ra^{1/3}$

- Malkus 1954 theory: maximize Nu, marginal stability
 $\rightarrow Nu \sim Ra^{1/3}$
- ► Upper bound theories: Howard-Busse, Constantin-Doering, Nicodemus *et al.*, Kerswell *et al.* $\rightarrow Nu \lesssim Ra^{1/2}$

- Malkus 1954 theory: maximize Nu, marginal stability
 $\rightarrow Nu \sim Ra^{1/3}$
- Upper bound theories: Howard-Busse, Constantin-Doering, Nicodemus *et al.*, Kerswell *et al.* $\rightarrow Nu \lesssim Ra^{1/2}$
- Whitehead-Doering 2D free-slip

 $ightarrow Nu \lesssim Ra^{5/12}$

- Malkus 1954 theory: maximize Nu, marginal stability
 $\rightarrow Nu \sim Ra^{1/3}$
- ► Upper bound theories: Howard-Busse, Constantin-Doering, Nicodemus *et al.*, Kerswell *et al.* $\rightarrow Nu \leq Ra^{1/2}$
- Whitehead-Doering 2D free-slip

ightarrow Nu \lesssim Ra $^{5/12}$

(local?) optimum solutions of full Boussinesq equations
 $\rightarrow Nu \sim Ra^{0.31}$

but optimum transport solutions are unstable ?!

- unstable to subharmonics even with mirror symmetry
- unstable to mean shear flow without mirror symmetry
- (weakly) stable with mirror symmetry and no larger scales

Optimum solution: unstable to mean shear flow

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● のへで

Optimum solution: unstable yet tight bound on Nu?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

2D optimum transport = 3D optimum ?

- 2D optimum transport = 3D optimum ?
- yes (conjecture)

- 2D optimum transport = 3D optimum ?
- yes (conjecture)
- 2D, steady optimum with periodic BC in horizontal captures 3D turbulent transport in cylinders with side walls?

- 2D optimum transport = 3D optimum ?
- yes (conjecture)
- 2D, steady optimum with periodic BC in horizontal captures 3D turbulent transport in cylinders with side walls?
- ► really?!

- 2D optimum transport = 3D optimum ?
- yes (conjecture)
- 2D, steady optimum with periodic BC in horizontal captures 3D turbulent transport in cylinders with side walls?
- ► really?!
- yes, possibly

3D Turbulence in RBC: universality and sheets

Cylinder with D/H = 1/3 and box (right), $Ra = 10^{11}$, Pr = 0.7van der Poel *et al.*, *Computers & Fluids* 2015

Thank you

