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Unstable coherent states in shear flows

3D Traveling Wave in  
Plane Poiseuille flow

Derek Stretch, CTR 1990 
Structure of high drag regions  

in turbulent channel flow  
(KMM R! =180)

unstable, yet captures  
near-wall structure quite well  
⟹ `Exact coherent structure’



• streaks 

• staggered quasi streamwise vortices 

• `sweeps’ (Q4) and `ejections’ (Q2) 

• solve Navier-Stokes!    (hence `exact’)          

`Exact’ Coherent structures 
self-consistently combine:



Unstable 3D Steady State in Plane Couette Flow

1 2 3 4 5
1

2

3

4

5

Energy Input Rate

D
is

si
pa

tio
n 

R
at

e

−1 0 1
0

0.1

0.2

−1

0

1

R
M

S 
ve

lo
ci

ty
   

   
   

   
   

   
   

  M
ea

n 
ve

lo
ci

ty
y/h

u equil
v equil
w equil
u turb
v turb
w turb

One unstable steady state (upper branch) 
captures statistics quite well
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Figure 3. Comparison of the mean and RMS velocities between a time-periodic and a turbulent
flow. (a) The mean streamwise velocity normalized by U versus the wall-normal coordinate y/h.
(b) The RMS velocities normalized by U versus y/h. Symbols and lines stand for the time-periodic
and turbulent flows, respectively. Circles and a solid line indicate the streamwise component,
triangles and a dotted line the wall-normal component, and squares and a dashed line the spanwise
component. Averages are taken over planes parallel to the walls, y = const., and over one time
period 64.7h/U for the time-periodic flow or over a period of 6 � 104h/U for the turbulent flow.

Figures 3(a) and 3(b) compare the mean and RMS (root-mean-square) velocities
for the time-periodic flow (symbols) with those for the turbulent flow (lines), where
both the mean and RMS velocities are scaled by U. The mean streamwise velocity
for the time-periodic flow is in very good agreement with that for the turbulent flow.
It is surprising and remarkable that even the RMS velocities of streamwise, wall-
normal, and spanwise components for the time-periodic flow coincide with those for
the turbulent flow. Excellent agreement in all the RMS vorticities and the Reynolds
shear stress, has also been confirmed. This is expected because the turbulent state
spends most of the time in the neighbourhood of the periodic orbit.

4. Periodic motion of gentle variations
As seen in figure 1, a turbulence state passes highly active regions at rare intervals.

This is reminiscent of the burst, which is an intermittent high-activity phenomenon. A
detailed inspection of the turbulence trajectory reveals that such highly active regions
are almost always reached from rather low energy input and dissipation states. From

Unstable time-periodic solutions in Plane Couette Flow
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Figure 1. Two-dimensional projections of a turbulent and a periodic orbit. The horizontal and
vertical axes respectively represent total energy input rate I and dissipation rate D normalized by
those for a laminar state. The grey line shows the turbulence trajectory, to which green dots are
attached at intervals of 2h/U. A closed red line denotes a periodic orbit. A cut of the turbulence
trajectory is coloured yellow to show a typical approach to the periodic orbit. All the orbits generally
turn clockwise. Nine blue dots on the periodic orbit indicate the phases of panels (a)–(i ) in figure 2.
The energy input and dissipation rates are in balance on the dashed diagonal.

for the periodic flow (see figure 2). However, the approach does not continue forever.
The turbulence trajectory will go away, sooner or later, from the periodic orbit. In
other words, this periodic orbit is a saddle. Occasionally, the turbulent state comes to
high-dissipation (D > 4, say) regions. This migration will be discussed in § 4 in relation
to the burst which activates small-scale motions to enhance the energy dissipation
(Kim et al. 1971). The present extraction of a periodic orbit may o�er the first (to
our knowledge) direct demonstration of the existence of a periodic motion embedded
in a turbulent flow, at least for this constrained case.

A full cycle of the temporal evolution of spatial structure of the periodic solution
is depicted in figure 2(a–i ) at nine sequential phases indicated by blue dots on the
periodic orbit in figure 1. The phase of figure 2(a) corresponds to the blue dot at the
time of the least input and dissipation rates. Typical near-wall coherent structures
are clockwise (or counter-clockwise) streamwise (x) vortices visualized by the red
(or blue) iso-surfaces of the Laplacian of pressure (see also the cross-flow velocity
vectors), and are streamwise streaks of relatively low streamwise velocity represented

Energy Input & Dissipation

Mean U

u, v, w  
rms

Kawahara & Kida, JFM 2001

One unstable periodic state captures 
more statistics better



`Optimum’ channel flow ECS 

min R
⌧

= 2h+
= 44 for L+

x

= 274, L+
z

= 105
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Attempted to compute envelope,  
largest and smallest shear solutions 

optimizing over both horizontal wavenumbers 
(Jue Wang & FW, 2003, abandoned)

Lots of EQs, TWs, POs: which ones matter? 



Shear flows are difficult: 
 ECS are 3D traveling waves, periodic orbits,… 

Lots of different solutions

Computing envelope was too hard 
(back then in 2003)



The simpler Rayleigh-Bénard example

COLD

HOT

g



Rayleigh-Bénard: 
Paradigmatic problem in nonlinear physics

• Fluid instabilities, bifurcations,  

• Lorenz eqns, attractor, chaos, … 

• Pattern formation, … 

• Turbulence…         



Turbulence in Rayleigh-Bénard convection

van der Poel et al. Computers in Fluids, 2015 Ra = 108, P r = 0.7



Turbulence in Rayleigh-Bénard convection

Richard Stevens  (cylinder) Ra = 108, P r = 6.4



Basic question: how much heat is transported for a given  ΔT ?



Mechanistic picture for inertial scaling
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COLD

HOT

free fall  
-g αΔT/2 

free `rise’  
g αΔT/2 



COLD

HOT



Mechanistic argument for inertial scaling

I interior at T = 0, top wall at ��T/2, bottom wall at �T/2

I reduced gravity g 0 = g↵�T/2

I free ‘fall’ velocity V = ±
p
g 0h, T = ±�T/2

I ) hVT i =
p
g 0h�T/2 = 1

4

p
g↵H (�T )3/2

I Total heat flux/conductive heat flux:

Nu = 1 +
hVT i

�T/H
⇠ 1

4
(RaPr)1/2

I flux independent of ⌫, . Inertial scaling.

I More sophisticated arguments by Kraichnan, Spiegel, . . . ,
Grossmann & Lohse. Richer phenomenology, log corrections,
various regimes in (Ra,Pr) plane.
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Mathematical model: Boussinesq equations

Velocity u(x , t), Temperature T (x , t)

@u

@t
+ u ·ru +rp = ⌫r2

u +T ŷ

r · u = 0

@T

@t
+ u ·rT = r2T

(small) parameters

⌫ = 4

r
Pr

Ra
,  = 4

r
1

RaPr

i.e.

Ra =
16

⌫
, Pr =

⌫



Pr ⇡ 0.02 (liquid Gallium), 0.7 (air), 7 (water), 100  (motor oil)
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r · u = 0

@T

@t
+ u ·rT = r2T

(small) parameters

⌫ = 4

r
Pr

Ra
,  = 4

r
1

RaPr

i.e.

Ra =
16

⌫
, Pr =

⌫



Pr ⇡ 0.02 (liquid Gallium), 0.7 (air), 7 (water), 100  (motor oil)



Boundary conditions

I Isothermal: T (±1) = ⌥1

I No-slip: u = v = 0 at y = ±1

I Periodic, wavelength
2⇡

↵
in horizontal x direction



Eliminating pressure and restricting to 2D
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Pure conduction solution: u = 0, T = �y 8Ra,Pr
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Bifurcation to convection for Ra > 1708, ↵c ⇡ ⇡/2, 8Pr
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supercritical bifurcation from Ra = 1708 (no-slip)

ku� u
L

k

R
stable unstableR

c

Stuart-Landau equation:

dA

dt
' (R � R

c

)A� �2|A|2A+ · · ·



stability curve about: u = 0, T = �y
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Independent of Pr (only ⌫ matters for linear stability).



Multiple convective equilibria for L/H = 2, Ra = 4000
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Bifurcations of Primary Branch
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Primary mode ↵ ⇡ ⇡/2 (blue), Hopf bifurcation near Ra ⇡ 53 000



Bifurcation of Primary 2nd harmonic
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Primary mode ↵ ⇡ ⇡/2 (blue), Hopf bifurcation near Ra ⇡ 53 000 Second mode ↵ = ⇡ (green)



Heat transport by marginal stability (Malkus 1954)

I Interior at T = 0: marginal inviscid stability

I Boundary layers of thickness � marginally stable:

Ra(�) =
g↵(�T/2)�3

⌫
⇡ 1708

16

I

) Nu ⇠ (�T/2)/�

(�T )/H
⇠ 0.084Ra1/3

I flux independent of H (Pr too).
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I What do unstable coherent states have to tell us?

I Which unstable coherent states should we consider?
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Continuation of unstable Primary (1)
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Compute

I 2D steady states, typically unstable

I Impose mirror symmetry

[u, v ,T ](x , y , t) = [�u, v ,T ](�x , y , t)

) u0(y , t) = 0 no mean shear

I Shift-reflect symmetry (Newton only)

[u, v ,T ](x , y , t) = [u,�v ,�T ](x +
L
x

2
,�y , t)



Numerical, spectral expansion

Chebyshev polynomials T
m

(y) integration in wall-normal y
direction, Fourier in x (periodic)
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(y)e il↵x ,

Zebib 1984 for OS, Greengard 1989 for Heat, Je↵reys 1928 for
RBC! . . .Four separate codes, di↵er in treatment of 4th order v
equation, di↵erent time-integration schemes, symmetries, Newton,
etc.



Numerics

I Cheb-Tau (or collocation) doesn’t work at all for
time-marching (huge spurious eigs > 0)

I Cheb-Galerkin p = 1 or 2 fine

Z 1

�1
f (y) (1� y2)p

T
m

(y)p
1� y2

dy

I (Chebyshev ! Gegenbauer/Ultraspherical)

I Proven!
M. Charalambides and FW, SIAM J. Numer. Analysis 2008



(1) Primary branch, L/H ' 2, unstable for Ra > 53 000

Ra = 5000
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(1) Primary branch, L/H = 2, unstable for Ra > 53 000
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(1) Primary branch, L/H = 2, unstable for Ra > 53 000
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(1) Primary branch, L/H = 2, unstable for Ra > 53 000
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(1) Primary branch, L/H = 2, unstable for Ra > 53 000
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(1) Primary branch, L/H = 2, unstable for Ra > 53 000

Ra = 1600 000



(1) Primary branch, L/H = 2, unstable for Ra > 53 000

Ra = 3200 000



(1) Primary branch, L/H = 2, unstable for Ra > 53 000

Ra = 4000 000



(1) Primary branch, L/H = 2, unstable for Ra > 53 000
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(1) Primary branch, L/H = 2, unstable for Ra > 53 000

Ra = 7000 000
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(1) Primary branch, L/H = 2, unstable for Ra > 53 000
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(1) Primary branch, L/H = 2, Velocity v

Ra = 10 000 000



(1) Primary branch, L/H = 2, Streamfunction  

Ra = 5000 000
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(1) Primary branch, L/H = 2, Streamfunction  

Ra = 20 000 000



(1) Primary branch, L/H = 2, Streamfunction  

Ra = 40 000 000



(1) Primary branch, L/H = 2, unstable for Ra > 53 000

Ra = 40 000 000



Continuation of unstable Primary (1)

Ra ×104
0 2 4 6 8 10 12 14 16

N
u

1

2

3

4

5

6

max

min

(1)

Primary mode ↵ ⇡ ⇡/2 (blue), Hopf bifurcation near Ra ⇡ 53 000. Second mode ↵ = ⇡ (green).



Continuation of Optimum Branch (2) now
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(2) Optimum branch: pick ↵ to maximize Nu

Ra = 6000
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(2) Optimum branch: pick ↵ to maximize Nu
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(2) Optimum branch: pick ↵ to maximize Nu

Ra = 2000 000



(2) Optimum branch: pick ↵ to maximize Nu

Ra = 3000 000



(2) Optimum branch: pick ↵ to maximize Nu

Ra = 4000 000
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(2) Optimum branch: pick ↵ to maximize Nu

Ra = 100 000 000



(2) Optimum branch: pick ↵ to maximize Nu
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(2) Optimum branch: pick ↵ to maximize Nu

Ra = 1000 000 000



(2) Optimum branch: pick ↵ to maximize Nu

Ra = 2000 000 000



(2) Optimum branch: pick ↵ to maximize Nu

Ra = 4000 000 000



(2) Optimum branch: pick ↵ to maximize Nu

Ra = 7000 000 000



Nu(Ra): primary
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Nu(Ra): primary, optimum
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Nu(Ra): primary, optimum, Upper Bounds
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Nu(Ra): primary, optimum, Upper Bounds, Exp. Data
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Nu(Ra) experimental data sets

I Nu ⇠ 0.088Ra0.32 fit of 3D turbulent data for D/H = 1/2
(Niemela, Sreenivasan, et al., 2000-2006)

I Nu ⇠ 0.105Ra0.31 fit of 3D turbulent data for D/H = 1/2
(He, Funfschilling, Nobach, Bodenschatz, Ahlers, 2012)

I Nu(Ra) 3D turbulent data for D/H = 4
(Niemela and Sreenivasan 2006)

I . . .



Niemela and Sreenivasan 2006

416 J. J. Niemela and K. R. Sreenivasan
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Figure 2. The heat transfer results for Γ =1/2 ‘corrected’ here for sidewall leak and finite
conductivity of horizontal plates. A linear least-square fit through the corrected data gives
Nu =0.088Ra0.32, compared with Nu = 0.124Ra0.31 for the directly measured Nu (Niemela et al.
2000).
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Figure 3. Nucorr versus Ra for the present data (Γ = 4), adjusted for the effects of sidewall
and horizontal plates. Also shown are recent results of Funfschilling et al. (2005) for aspect
ratio 3, similarly corrected. The inset shows the same Nucorr data normalized by Ra1/3.

of 1010 < Ra < 1012, with the corrections described above raising the slope over the
uncorrected data, which have a slope of more precisely 1/3. For the data falling in the
range 108 <Ra < 1010 the local log–log slope is nearly constant giving an exponent
of 0.31. Both the constancy of the log–log slope with increasing Ra and its numerical
value are in good agreement with predictions of Grossmann & Lohse (2002) in this
range of Ra and for unity Pr (see their figure 4b). While the theory also predicts
a saturation of the local exponent to 1/3 at higher Ra, it occurs more slowly than
is observed here. For comparison, we also show recent results of Funfschilling et al.
(2005) also corrected for sidewall and end-plate effects. These data were obtained for
Γ =3 and Pr =4.38, and accessed a limited range of Ra.

For Ra > 3 × 1012 the slope of the Nu–Ra curve increases significantly, as can be
seen better in the inset to figure 3. However, it is precisely in this region of Ra



Horizontal wavenumber ↵ vs. Ra, optimum
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Varying Pr little e↵ect on optimum Nu(Ra)
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Varying Pr but multiple local maxima! (Ra = 3 105)
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Nu(↵,Ra), Pr = 1 2nd max subdominant
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Nu(↵,Ra), Pr = 7 2nd max almost takes over

0 5 10 15 20 25 30
↵

1

3

5

7

9

11

13

15

N
u

5e+
04

4e+
06

10 20 30 40 50 60 70 80
1

15
30
45
60
75

Ra = 1 ⇥ 109



Nu(↵,Ra), Pr = 10 2nd max takes over
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Nu(↵,Ra), Pr = 100 1st max disappears
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Nu(↵,Ra), Pr = 1, 4, 7, 10, 100
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Conclusions: Turbulent transport ⇡ optimum transport?

I Malkus 1954 theory: maximize Nu, marginal stability
! Nu ⇠ Ra1/3

I Upper bound theories: Howard-Busse, Constantin-Doering,
Nicodemus et al., Kerswell et al. ! Nu . Ra1/2

I Whitehead-Doering 2D free-slip ! Nu . Ra5/12

I (local?) optimum solutions of full Boussinesq equations
! Nu ⇠ Ra0.31
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but optimum transport solutions are unstable ?!

I unstable to subharmonics even with mirror symmetry

I unstable to mean shear flow without mirror symmetry

I (weakly) stable with mirror symmetry and no larger scales



Optimum solution: unstable to mean shear flow
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Optimum solution: unstable yet tight bound on Nu?
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but optimum transport solutions are 2D ?!

I 2D optimum transport = 3D optimum ?

I yes (conjecture)

I 2D, steady optimum with periodic BC in horizontal captures
3D turbulent transport in cylinders with side walls ?

I really?!

I yes, possibly
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3D Turbulence in RBC: universality and sheets

Cylinder with D/H = 1/3 and box (right), Ra = 1011, Pr = 0.7

van der Poel et al., Computers & Fluids 2015



Thank you
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